num_docs
document chunks to the query.distance
between 0 and 1.certainty
will also be returned, which is a value between 0 and 1 where the higher the certainty, the more similar the document.intercom
, the additional metadata will be returned in theloader_metadata
field.curl --location --request POST '/ai/embeddings/similarity-search' \
--header 'Content-Type: application/json' \
--data-raw '{
"bucket_name": "string",
"num_of_docs": 3,
"query": "string"
}'
{
"data": [
{
"distance": 0,
"document_chunk": "string",
"metadata": {
"certainty": 0,
"checksum": "string",
"embedding": "string",
"filename": "string",
"loader_metadata": {},
"source": "string"
}
}
]
}
Authorization: Bearer ********************